These pointers discuss triangles and their higher-dimensional generalizations (simplices). I am particularly interested in triangulation by which I mean partitioning regions into triangles, tetrahedra, or higher dimensional simplices, for various applications including finite element mesh generation and surface interpolation. (The other meaning of triangulation involves determining locations and distances from certain measurements.) For more material on the first type of triangulation, see the mesh generation section of Geometry in Action or the list of my own triangulation papers. For other kinds of partitions, see the page on dissection.
Category: Mathematics
Mathematics uses many concepts in threes. The first structure mathematically is a triangle. There are acute, right, and obtuse angles. Trigonometry is the study of the relationship of the sides of a triangle. Have your heard of Pascal's Triangle?
Geometry – 3 basic types
Three Types of Triangles
- Scalene triangle: A triangle with no congruent sides
- Isosceles triangle: A triangle with at least two congruent sides
- Equilateral triangle: A triangle with three congruent sides